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1. INTRODUCTION

The main purpose of this paper is to present improved error bounds for the
smooth rational interpolation schemes over triangles discussed in Barnhill,
Birkhoff, and Gordon (1 J. This is accomplished by an appropriate extension
of the Sard kernel theorem to triangles, a second purpose of this paper being
to show that the Sard kernel theorem can be used on more general regions
than rectangles.

In Ref. 1, an interpolation scheme using rational functions is described
which interpolates to a given function and its first k - 1 derivatives on the
boundary of a triangle T. In the case k = 1, or the trilinear case, the authors
prove that if U E C4(T) the error in interpolation is O(h3) where h is the
diameter of T For the case k = 2, or the tricubic case, they state, but do not
prove that the ermr in interpolation is O(h6 ) for functions U E C 9(T).

In this paper we show that one obtains O(h3) in the trilinear case assuming
only that u is contained in a certain Sard-like space B'{',~ , a slightly weaker
assumption than u E 0(T). In the general case we show that the error in
interpolation is O(h3k) assuming that U E B:3k- s , where s = [3k/2], a slightly
weaker assumption than U E C3k(T). Moreover, we show how to calculate
explicit bounds for the constants invoLved in these error estimates, and carry
out this calculation for the trilinear case. We remark that the determination
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that the order of the error is 3k can be obtained from Theorem 5 of Ciarlet
and Raviart [6] for U belonging to the Sobolev space W~k(T) once one shows
that the interpolation scheme reproduces all polynomials of degree 3k - 1
or less. Our proof allows one, in principal, to compute the constants involved.

The interpolation scheme described in Ref. 1 has as one application that
it can be used to generate compatible triangular finite elements by taking the
boundary data to be polynomials of certain degrees. This is carried out in
Ref. 5. A second type of interpolant is introduced in Ref. 3. On one side of
the triangle, one could instead take the boundary data to be arbitrary
functions so as to incorporate finite elements over triangulated polygons
which satisfy boundary conditions exactly.

For algebraic simplicity, the authors of Ref. 1 considered a "standard"
triangle with vertices at (0,0), (1, 0), and (1, 1), noting that any other triangle
can be obtained from it by an affine transformation which carries polynomial
and rational functions into polynomial and rational functions of the same
degree and preserves the order of approximation. We shall also find it
convenient to consider a "standard" triangle but choose to consider the
triangle Th with vertices at (0, 0), (h, 0), and (0, h). Our methods, however,
are applicable to any triangle.

2. THE SARD KERNEL THEOREM IN TRIANGLES

In this section we describe the Sard kernel theorem as it relates to triangles,
in preparation for later sections. Our discussion parallels that in Barnhill and
Gregory [2]. We let T be any triangle with its longest side parallel to a
coordinate axis and let (a, b) be any point in T such that the rectangle with
opposite corners (a, b) and (x, y) and with sides parallel to the coordinate
axes is contained in T for all (x, y) in T. For example, one can choose (a, b)
to be the point on the longest side which is the foot of the perpendicular to
this side from the opposite vertex. In the case of a right triangle one can also
choose (a, b) to be the vertex at the right angle.

For all U E Cm(T), one has the Taylor expansion

u(x, y) = L uija, b)(x - a)(i)(y - b)W
i+i<m

+ L (y - b)(j)r (x - x)<m-i-ll Um-i.i(x, y) dx
i<q a

+ L (x - a)<i>r (y - ji)<m-i-ll Ui.m-;(x, ji) dji
i<p b

+rr (x - X)(P-l)(y - ji)(q-l) U~p,q(x, ji) dx dji,
a b

p + q = m.
(2.1)
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Here we use subscripts to denote partial derivatives and use the notation

(
_ )(il _ (x - a)i

x a - i!

(2.2)
o ~j < q

o~ i <p

Actually (2.1) holds for the wider class of functions B;,q = B~,la, b) with
the properties

Ui.i E C(T), i < p, j < q,

Um-i-l,;(X, b) is abs, cont., Um_i,;(X, b) E L1(11),

Ui,m-i-ia, y) is abs, cont., Ui,m_;(a, y) E L1(12),

U'P,q E L1(T),

where h is the intersection of the line y = b with T and 12 is the intersection
ofthe line x = a with T. Since we will want to use certain Holder inequalities
later, we will want to restrict our class of functions to be the class
B~,q = B~,q(a, b), r ;?:: 1, with the properties (2.2) but with

(2.3)

o~j < q,

o~ i <p,
Um-U(X, b) E Lr(Il),

Ui,m-i(a, y) E LlI2),

U'P,q E Lr(T).

The class B;,q is similar to the class of functions boldface B'P,q over rectangles
in Sard [8]. Also B;,q is similar to the class of functions p,q(a, b) discussed in
Mansfield [7].

Let F be a linear functional of the form

F(u) = L If Ui,i(x, y) dp/,i(X, y) + L f Ui,;(X, b) dfl-i,i(X)
i<'P T i+i<m I,
i<q i>p

+ L f Ui,;(a, y) dfl-i,i(y),
i+i<m 12

i>q

(2.4)

where the functions fl-i,i are of bounded variation. Suppose also that F has
the property that F(q) = 0 for all polynomials q of degree m - 1 or less.
Then the Sard Kernel theorem [8, p. 175] can be applied to give the
representation

F(u) = L f Km-j,j(x, y; x) um_j,j(x, b) dx
i<q it

+ L f Ki,m-i(x, y; y) Ui,m-i(a, y) dy
i<'P 12

U E B~,ia, b), (2.5)
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Km-i.i(x, y; x) = F(x.II)[(X - X)<m-j-l) lj;(a, x, X)(y - b)(j)], j < q, (2.6)

Ki,m-i(x, y; y) = F(x.II)[(x - a)<i)(y - y)<m-i-l) lj;(b, y, y)], i < p, (2.7)

Kp,q(x, y; x, y) = F(x,II)[(x - X)<P-l) rjJ(a, x, x)(y - y)(q-l) rjJ(b, y, y)], (2.8)

where

.p(a, ., x) ~ !-i if a ~ x < x
if x ~ x < a
otherwise.

3. TRILINEAR INTERPOLATION IN TRIANGLES

In this section we derive a priori error bounds including constants for the
trilinear interpolant of Ref. 1. The trilinear interpolant on the triangle Th

with vertices (0, 0), (h, 0), and (0, h) is given by Q*u where

where

&\u(x,y) = (h ~~; Y) u(O,y) + (h ~ y) u(h - y,y),

&>2U(X, y) = ( h ~~ ~ y ) u(x, 0) + ( h !'...x) u(x, h - x),

&>su(x, y) = ( x ~ y ) u(x + y, 0) + ( x ~ y ) u(O, x + y),

.Pu(x, y) = ( h - Z- y ) u(O, 0) + ~ u(h, 0) +*u(O, h),

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

where the projector .P = &>i&>j&>k' i =1= j, j =1= k, k =1= i, the product being
taken in any order. It is shown in Ref. 1 that Q*u interpolates u on the
boundary of Th and also that Q* reproduces all quadratics but not all cubics.

THEOREM 2.1. If u E B':,2(0, 0), then

1(1 - Q*) u(x, y)IIL""cTh )

~ ~s [II us.o(x, O)IIL",,[o,hl + II u2,1(x, O)IIL",,[o.hl + II uo.s(O, y)IIL",,[o.hl]

+ ~ II u1,2(x, y)IiL,x>(Th ) • (3.6)
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IfUE Bi,2(0, 0), then

11(1 - Q*) u(x, y)IIL,,(Th )

h7 / 2

< 12 V5 [II u3,o(x, 0)IIL2[o,h] + II U2,1(x, 0)IIL2[o,h] + II UO,3(0, Y)IIL2[o,h]]

+ 4~211 u1,2(x, Y)IIL2(Th ) • (3.7)

In general, if UE BL2(0, 0), then

11(1 - Q*) u(x, y)IILr(Th )

h3+l/r[B(r + 1, r + 2)]1/r
< 2(r + 1)1/r

X [II U3,o(x, O)IILr[O,h] + II U2,1(X, O)IILr[o.h] + II uo,lO, Y)IILr[o,h]]

+ 22-1/r(:~ 2)1/r II U1,2(x, Y)IILr(Th ) , (3.8)

where B(f', "I) is the beta function.

Proof We use (2.5) for U E BL2(O, 0) with F = 1- Q*. First

K3,O(x, y; x) = (I - Q*)(x - x)~)

_ 1 I( ~)(2) ( X ) (h ~)(2)-2:!x-x+ - h-y -y-X+

_ (_x_) (x + y _ X)(2) + .!.- (h _ X)(2)!.
x+y + h I

Then H(rx) = G(rx, x) = t(xjrx)(rx - x)~) is a monotonically increasing
function of ex for °< ex ~ h, so that H(h) - H(h - y) ;:;;: ° and
H(x) - H(x + y) < 0. Also, G(rx, x) is a monotonically decreasing function
of x for °< x < h so that maxO';;x';;h [G(h, x) - G(h - y, x)] occurs at x = 0
and equals xyj4. Similarly mino,;;x';;h [H(x) - H(x + y)] occurs at x = °and
equals -xyj4. Hence

IK3,O(X, y; x)j < xyj2 (3.9)

uniformly in x. We do not claim that this is a sharp result, but we do note that
K3,O(X, y; x) is not a monotonic function of X. Next

K2,1(x, y; x) = (I - Q*)[(x - x)+ y]

= ~ lex - x)+ y - (h ~ y) (h - y - X)+! < 0,
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xy(h - y - x)
min K2,1(x, y; x) = K2,1(x, y; x) = - . (3.10)

O<;;x<;;h 2(h - y)

K 1
•
2(X, y; x, y) = (I - Q*)[(x - x)~ (y - y)+]

= ~ ley - y)+ [(x - x)~ - (h ~ y) (h - y- x)~]

+ (x - x)~ [(y - y)+ - ( h ~ x ) (h - x - y)+Jl.

Since

I(x - x)~ - (h ~ y) (h - y- x)~ I~ 1

and

I(y - y)+ - ( h ~ x ) (h - x - y) I~ ( h ~ x ) (h - x - y),

then
I Kl.2(X, y; x, y)1 ~ t(h - x).

Finally KO,3(X, y; y) is analogous to K3.0(X, y; x) so that

1KO,3(X, y; Y)I ~ xyj2

uniformly in y.
Equation (2.5) and the triangle inequality imply that

1(1 - Q*) u(x, y)1

~ r 1 K3.0(X, y; x) u3•0(x, 0)1 dx
°
+r 1 K2,1(x, y; x) U2•1(X, 0)1 dx

°

(3.11)

(3.12)

+ If 1 K1,2(x, y; x, y) U1,2(x, Y)I dx dy
Th

+r I KO,3(X, y; y) UO•3(0, y)1 dy

°
[f

h h h

~ x2
Y 1u3.0(x, 0)1 dx + f 1U2,1(x, 0)1 dx + f 1U O•3(0, Y)I dy]

° ° °
+ h 2 x If 1 ul,lx, y)1 dx dy,

Th
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from which (3.6) and (3.7) follow. In order to obtain (3.8) we observe that the
integral f~ yr(h - y)r+1dy, after a change of variable to [0, 1] becomes the
beta function B(r + 1, r + 2). If r is an integer, then B(r + 1, r + 2) =
[r! (r + 1) !]/[(2r + 2) !].

4. HIGHER ORDER INTERPOLATION

We now give error bounds for interpolation by the projector

(4.1)

where yk = f!I?f!lJ/f!I?, i =I=- j =I=- I, the product being taken in any order.
Here the projectors f!lJ/ are the Hermite interpolants to values and the first
k - 1 directional derivatives (parallel to the ith side) on two sides of the
triangle T" interpolated along parallels to the third side. Explicitly

f!lJ1kU(X, y) = L (h - y)i Hl,i (h ~ ) Ui.O(O, y)
i<k y

+ i~k (h - y)i H 2•i (h ~ y) ui.o(h - y,y),

f!lJ2
kU(X, y) = L (h - x)i Hl,i ( h ~ ) uo.;(x, 0)

i<k X

(4.2)

+ L (h - x)i H 2•i ( h ~ -) uo,b, h - x), (4.3)
i<k x

f!lJlu(x, y) = i~ (x + y)i Hl,i ( X ~ Y )([ a: - :yf u) (0, x + y)

+ i~k (x + y)i H 2,i ( X ~ y-)([ a: -~f u) (x + y, 0),

(4.4)

where the Hi,i' j = 1,2; i = 0,... , k - 1, are the cardinal Hermite poly
nomials of degree 2k - 1 on [0, 1]. We now show that YkU is an element of
5;k-l , the set of all polynomials which are of degree 2k - 1 on all parallels
to each of the lines x = 0, y = 0, h - x - y = 0.

LEMMA 4.1. The product f!lJlf!lJ/f!lJ l
k, i =I=- j =I=- I, in any order of the three

projectors f!lJ1
k , f!lJl, f!lJl is a projector with range ~k-l •

Proof Since 5;k-l is invariant under any affine transformation that maps
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the set of vertices of Til onto themselves, we need only show that f!l?&Jl&J2
k

is a projector with range .9';k-l . First &Jl&Jlu may be expressed as

&Jl&Jlu(x, y) = L pli,;)(X, y) udO, 0)
i.i<k

+ L uli·j)(x, y) ([(~ - ~)i -;-] u) (0, h)
i,j<k ox oy oy

a a i

+ i~k T1i)(x, y) ([ax - oy] u) (x + y, 0) (4.5)

where the p(i,;), a(i,;), and T1i ) are rational functions. The first two terms come
from evaluating

L (x + y)i Hl,i ( ~ )([]- - : r&Jlu) (0, x + y).
i<k X Y X Y

To evaluate

i~k (x + y)i H 2,i ( X ~ Y )([ :x - o~r &Jlu) (x + y, 0) (4,6)

we use the fact that Hi:~(O) = 8ij ,0 :(; i,j :(; k - I and Hg:~(O) = 0,0 :(; i,
j :(; k - 1. We also observe that

Oi [ 0 (Y)]oxi (h - x)J Hl,j h _ x (x + y, 0) = 0,

and

Oi [ 0 (Y)]oyi (h - x)J Hl,j h _ x (x + y, 0) = Oij, 0:(; i, j:(; k - 1.

Thus

0::::" [j~ (h - x)j Hl,j ( h~ x ) uo,;{x, 0)] = O"jU",;{x + y, 0)
and (4.6) reduces to the third term of (4.5). Then

&J1k&Jl&Jlu(x, y) = L o:(i,il(X, y) Ui,j(O, 0)
i,i<k

+ L {5(i·;)(X, y) ([-;- (~ - ~)i] u) (h, 0)
i,i<k ox ox oy

" (Ol( ) ([ Oi (0 a )i] )(+ i,~k Y •.J x,y oyi ax - oy u 0, h)

(4.7)
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where the ali,j), (3li,il, y(i,il are apparently rational functions. We now show
that these functions are actually all elements of3;k-l ' From the definition of
the :!J!l, the range of :!J!lk:!J!ak:!J!2k certainly contains 5;k-l . Also the number
ofelements in 5";k-l is exactly the same as the number of terms in (4.7). It then
follows that the interpolation conditions of (4.7) are linearly independent
over 5;k-l and the a(i,il, Wi,j), yli.i) are all elements of 5;k-l . They are,
in fact, the cardinal functions for the interpolation scheme (4.7). Q.E.D.

In what follows it will be convenient to express ;£'kU(X, y) as

;£'kU(X, y) = .L hi+ia(i,i) (~ , t) ui,lO, 0)
t,J<k

+ L hi+if3<i,j) (~, ~)([~ (~ - ~n u) (h, 0)
i,i<k h h ox ox oy

+ L hi+iy(i,il (~, ~)([-;- (~ - ~)i] u) (0, h)
i,i<k h h oy ox oy

where the ali,;), {3<i,il, yli,il are the cardinal functions for the corresponding
interpolation scheme on the triangle T1 with vertices (0, 0), (1,0), (0, 1). We
remark that for the case k = 2, ;£,kU is the tricubic polynomial interpolant
constructed by Birkhoff [4].

We now show that Q*u interpolates u and its first k - 1 derivatives on the
boundary of Th • This will be implied by the following two lemmas.

LEMMA 4.2. For i, j = 1, 2, 3, i =1= j, the functions

(:!J!l EB !?Jl)u = (:!J!ik + !?J/ - !?Jik!?J/)U interpolate u E Ck-l(oTh)

and its first k - 1 normal derivatives on 8Th provided that u satisfies the
compatibility conditions

( om+nu ) (P ) (om+nu ) (P) m, n < k', m + n > k - 1
os.m os.n I = os.n os.m I,

t J J , (4.8)

at the vertex PI with adjacent sides i and j, where OfOSi denotes directional
differentiation parallel to the ith side.

Remark. For the case k = 2, this is essentially a restatement of Lemma 4
of Ref. 1, except that the assumption u E C2(T) in Ref. 1 is stronger than
necessary.

Proof of Lemma 4.2. By affine invariance and symmetry, it is sufficient
to consider the case (:!J!lk EB :!J!2k). First, it is clear that
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is zero and has all its partial derivatives of order less than or equal to k - 1
zero on the sides x = 0 and h - x - y = O. We now express (f!J\k EB fYJl)u
as

Since (I - fYJzk) u(x, 0) = 0, fYJ/,v with v = (I - fYJl)u is zero on y = °and
thus (fYJl

k EEl fYJzk) u(x, 0) = u(x, 0). Now

k-I m(m) (2) ( 0 0 )m-i( aiu )+ to i~ j o/i,;(X, y) oy - ex oxi (h - y, y) ,

1 :s;;: m < k, (4.9)

where

fL = 1,2.

We now let v = (I - fYJl)u and evaluate (4.9) at y = O. Because of our
continuity assumption on u and the fact that v and all its partial derivatives
of order less than or equal to k - 1 are zero on x = 0 and h - x - y = 0,

Oi (OiV )
oyi oxi (0, 0) = 0,

and

Also

( a 0 )i( OiV )
oy - ox oxi (h, 0) = 0, i +j < k.

(
0 0 )i( OiV )
oy-ex oxi (h-y,y)=O, O:S;;:j:S;;: m, o :s;;: i :s;;: k - 1,

since the last j derivatives are taken along the line h - x - y = 0 and
oi(1 - fYJl)ujox i == 0 there, 0 :s;;: i :s;;: k - 1.

Thus

(
OmfYJlv ) m-I m-i (m) (1) ( Om-i (Ok-iV ))

oym (X, 0) = i~O i~ j ljJk-i.i(X, 0) oym-i OXk- i (0, 0).

(4.10)
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By direct calculation, using the formula for Ok-i&>lujoxk- i which can be
obtained from (4.9) by interchanging x and y, one finds that

Hence

(
om-j (Ok-i&>lu)) ( Ok-i (om- ju ))

oym-j OXk-i (0,0) = OXk- i oym-j (0,0). (4.11)

if and only if

1<.m<.k-1

(4.12)

om on on om
oym Bxn u(O, 0) = oxn oym u(O, 0),

which proves the lemma.

m,n <k, m + n > k - I,

(4.13)

LEMMA 4.3. If u E Ck-l(oTll) and satisfies (4.8) at each vertex, then Q*u,
where Q* is defined by (4.1) can be expressed as

I oF i, i = 1,2, 3.
(4.14)

Proof

and

Q* = 1- t{(I - &>l)(I - &>l) + (I - &>l)(I - &>lk)

+ (I - &>l)(I - &>!k) - (I - &>ik)(I - &>l)(I - &>!k)}.

Thus

by Lemma 4.2.
Lemmas 4.2 and 4.3 immediately give

THEOREM 4.1. Let u E Ck-l(oTh) andsatisfy (4.8) at each vertex. Then Q*u,
with Q* defined by (4.1), interpolates u and its first k - 1 derivatives on the
boundary of Th •



SMOOTH INTERPOLAnON IN TRIANGLES 317

Remark. Note that Lemma 4.3 also shows that Q* is equivalent to the
operator Q of Ref. 1, Theorem 4, defined by

LEMMA 4.4. Q* is exact for all polynomials of degree 3k - 1 or less.

Proof Q* clearly is exact for all polynomials in 5';k-l' We need now
consider only elements U E 7T3k-l , the set of polynomials of degree 3k - 1 or
less, such that .fiJku = O. Thus we first consider polynomials of the form Xiyi,
i + j < 3k, k < i, j < 2k - 1. Then g,?Xiyi = 9/xiy i = xiyi, and
f!l>lxiyi = ,!l7kX >Y> = O. Thus Q*xiy> = Xiyi. Similarly Q* lS exact for all
polynomials of the form xi(h - x - y)i and yi(h - x - y)i, i + j < 3k,
k ~ i, j :( 2k - 1. These polynomials are linearly independent and total
I = 3k(k + 1)/2. Since 3k2 + I = 3k(3k + 1)/2, the number of elements in
7T3k-l , the proof is complete.

Since Q*[Xkyk(h - x - y)k] = 0, Q* does not reproduce all polynomials
of degree 3k. This indicates that (l - Q*)u is O(h3k), a result which we now
prove.

THEOREM 4.2. Let U E B;.3k_8(O, 0), S = [3k/2]. Then there exist constants
C1 and C2 independent of u and h such that

~ CIHlk+ll~ (~ II Ui.31<_;(0, Y)IIL,!!l.h1 + .L II U3k-).li, O)IIL,lll.h1]
.<8 J<3k-s

(4.15)

Proof First, it is easily shown that the kernels

i < s,

and

j < 3k - s,

can each be bounded on Til by a constant times h3k- 1, and that the kernel
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can be bounded on Th by a constant times h3k- 2• Thus

1(1 - Q*) u(x, y)1 :::;; L Ci,3k_ih3k-l+l/r' II Ui,3k-,(O, y)IILr[O,h]
i<s

+ I C3k_uh3k-l+l/r' II U3k_j,;(.X, O)IILr[o,h]
1<3k-s

(4.16)

where l/r + l/r' = 1. Taking the Lr norm of both sides of (4.16) together
with the triangle inequality gives (4.15) and proves the theorem.

We remark that a careful estimation of these kernels leads to explicit
bounds, as in the preceding section.
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